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We define chaotic motion for dynamical systems acting in finite, discrete spaces via the deter-
ministic randomness of their trajectories. The theory of algorithmic complexity is used to provide
the meaning of randomness for symbolic sequences derived from these trajectories, and a practical
test of randomness is devised on the basis of an ideal, physically motivated, model of a computer.
Two examples—a discretized standard map, and a fully connected neural network—are studied

analytically and numerically.

PACS number(s): 05.45.+b

I. INTRODUCTION

In research papers, seminars, and even popular
magazines one encounters with increasing frequency
the sentence “this motion (dynamics, pattern, state of
things, ... is chaotic.” What exact meaning should we
give to this statement, which would render in a satisfac-
tory way our understanding of chaos, and could be ap-
plied to the largest class of dynamical situations? At the
present moment, we have a fairly good idea of what chaos
is in—say—low-dimensional Hamiltonian systems. Yet,
the extension of this concept to infinite-dimensional sys-
tems governed by partial differential equations, or to dy-
namics in spaces with a finite but arbitrarily large num-
ber of states, is far less than obvious. In this paper, we
focus our attention on this latter class, which includes
cellular automata [1], certain neural networks [2], etc.;
these systems are of utmost importance, since they seem
to be well suited for the description of the phenomena
occurring in complex systems. Ranging from turbulence
to DNA coding, these phenomena mark the frontier of
today’s dynamics.

Chaos is a multifaceted entity, and its essence can be
grasped at different levels of sophistication. It is usu-
ally associated with fast decay of correlation functions—
whether temporal or spatial, but more often it is iden-
tified as sensitive dependence on initial conditions [3].
This feature is present whenever an evolution law #(0) —
z(t) := S'x(0)—the operator S* can be induced by
a map, a differential equation, or any other means—is
such that close initial vectors ®(0) give rise to trajec-
tories parting exponentially fast in time. This concept
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is rendered precise in the definition of Lyapunov expo-
nents, whose positive value is often taken as a definition
of chaos. While this definition catches one of the main
features of what we would like to call chaos, it is incom-
plete in some respects. In fact, on the one hand it leads
sometimes to unsatisfactory answers, on the other hand
it cannot always be applied, as in the case of systems
with discrete state space.

The first drawback appears in infinite-dimensional sys-
tems, like that describing in fluid dynamics a scalar field
6(=,t) (e.g., the local concentration of a pollutant) driven
by a given velocity field v(z,t) (e.g., water flow in porous
rocks). The evolution of 8(z,t) is governed by the equa-
tion

8:0(=,t) + [v(=,t) - V]0(=,t) = DAB(=,t), (1)

where D is the bare diffusion constant. To detect if sensi-
tive dependence on the initial condition 8(z, 0) is present,
one can ideally change this function by a small perturba-
tion 60(z,0), and measure, as time evolves, the difference
80(,t) between the true and the perturbed solutions of
Eq. (1). A simple computation shows that

/ 166(=, t)[2de < / 166(z, 0)[2d=. )

Errors do not grow in time, at least in the L2 metric
which seems natural to this problem, and sensitive de-
pendence on initial conditions is totally absent. Nonethe-
less, the evolution of 6 can be chaotic, in some respect
[4]. For simplicity, consider the diffusionless case D = 0.
The solution of Eq. (1) can be written

0(=,t) = 0(St=,0), 3)
where S? is the formal solution of the stream equation

1959 ©1994 The American Physical Society



1960

i—f = v(a,t). (4)
The motion induced by (4) in the usual three-dimensional
space can be completely chaotic, and the “time record”
F(t) = 0(=,t) of the pollutant concentration read at fixed
position  can be a complicated function as well, even if
(2) holds. Other well-known indicators of stochasticity
can be used to characterize this complexity. For instance,
one might compute the Kolmogorov entropy [5] associ-
ated to the record F(t), via the Grassberger-Procaccia
method and a suitable embedding technique [6]: a posi-
tive value will summon to trial the sequence—and its gen-
erator, the dynamical system (1)—on chaoticity charges.

As a matter of fact, the paradox presented in the
last example is identically present ceteris paribus in the
Liouville description of classical mechanics, where a lin-
ear operator determines the motion of probability dis-
tributions in phase space. This motion is not sensitively
dependent on initial conditions (in the metric of a proper
functional space) even for completely chaotic systems like
the Arnol’d cat [7]. This paradox is resolved noting—as
done, e.g., in [8]—that the function-theoretical descrip-
tion of this evolution demands an exponentially enlarging
vector basis set. Chaos therefore reveals itself in the form
of a large information burden.

All that shows, in a clear way, the remarkable differ-
ence between the complexity of the dynamical systems,
like the one defined by (1), which do not suffer from an
exponential growth of the errors, and that of their tra-
jectories, as given by F(t).

Semnsitive dependence on initial conditions fails to be
effective also in the large class of systems with discrete
states, discussed in this work. Discreteness renders ob-
viously impossible the determination of trajectories with
arbitrarily close initial conditions, as required in the def-
inition of Lyapunov exponents. As a partial remedy, a
metric with some physical significance can usually be de-
fined, and initial states with minimal distance can be
identified and followed under time evolution. Increase
of the distance of nearby states goes under the name of
damage spreading [9).

Recall now that positivity of Lyapunov exponents
alone is not sufficient for chaos: together with stretch-
ing, one needs folding. This latter aspect seems to be
connate to finite systems, so we will not spend any more
time on it beyond that required to note that the net re-
sult of stretching and folding is to provide bounded and
unpredictable orbits. In fact, under a suitable partition-
ing of phase space these orbits can be translated into
sequences of symbols which display significant stochas-
tic aspects. This reduction is the main tool of symbolic
dynamics. We shall lay our definition of chaos on the
randomness of the symbolic sequences representing the
time evolution of a system, a common ground for dis-
crete and continuous systems alike. Randomness will be
defined according to Kolmogorov’s theory of algorithmic
complexity [10,11], following an idea first employed in dy-
namics by Alekseev and Jacobson [12] and Brudno [13],
and later developed by Ford and co-workers [14-16] into
the notion of deterministic randomness.
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In discrete, finite systems, no artifice is required to
translate motions into symbolic sequences: associating a
letter (or a binary word) to each space point does the job,
and trajectories become strings of these letters. Follow-
ing Ford, we will call deterministically random-chaotic
those trajectories which are informationally incompress-
ible, that is, those for which no algorithm can be found
to “encode” their associated sequence while compressing
it. Clearly, for any dynamical system, a possible scheme
to encode a trajectory is the motion-defining algorithm
itself, endowed with a specification of the initial condi-
tion; these two things together can be thought of as a
computer program which outputs a precise dynamical se-
quence. Whenever the computer program is significantly
shorter than its output, the motion will be defined com-
pressible, or regular. To focus ideas, let us introduce two
examples to be studied in detail in this paper.

First, we consider a discretized standard map, obtained
by considering lattice points in the torus [0,27]? of the
form (z,y) with £ = 2nq/L, y = 2np/L, and with ¢,p
integers between 1 and L, also an integer. The action of
the map is defined as follows:

Gni1 = [q,,-f—k% sin(p,,-"lLI ] mod L, (5)
Pnt1 = (Pn + qny1) mod L,

where [] means the integer part, where k is an external
parameter (the “kick strength”), and where the index n
labels discrete time. When k£ > 1 the motion of the
continuum standard map is chaotic; will the discretized
motion be the same? This example draws additional im-
portance from the debated problem of gquantum chaos:
quantum mechanics can be regarded as a discretized ver-
sion of classical mechanics, acting on suitable lattices in
phase space. In analogy with [17,18,8], we can think of L
in the above equation as the inverse of Planck’s constant
h.

The second example is a fully connected, deterministic
neural network. The system is composed of L spins, o; =
—1,1, which evolve according to a simple rule

L

ZJijO'j(n) N i=l,...,L (6)

i=1

oi(n+1) =sgn

where J;; is a given random quenched coupling matrix,
see Sec. IV for details. The large cardinality of the num-
ber of possible states of this system, 2~ provides us with
a good model for complex systems. Moreover, a recent
investigation [19] shows that these states are visited in a
rather irregular fashion: even if eventually periodic (as
in all discrete, finite systems) the motion is characterized
by exponentially long transients, and “local” complexity.
In fact, the time sequence of o;, at fixed site ¢, possesses
many statistical properties, including positive Shannon
and topological entropies: an ideal patient indeed for our
surgical table.

This paper develops according to the following scheme.
In Sec. II we briefly recall some basic concepts of algo-
rithmic complexity theory and we draw a formalism for
dynamical systems in finite spaces. Section III is the
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heart of the paper: we introduce the concept of a realistic
computing machine as a means of estimating algorithmic
complexity and detecting chaos or deterministic random-
ness in motions in finite spaces. Section IV is devoted to
the study of the systems defined above, by means of nu-
merical computations and probabilistic approximations.
In Sec. V the reader may find some further remarks and
the conclusions.

II. DETERMINISTIC RANDOMNESS
OF MOTIONS IN DISCRETE, FINITE SPACES

A dynamical system can be interpreted as a computer,
which for us is nothing else than a Turing machine capa-
ble of taking a binary sequence as input and producing
a binary sequence as output. This approach is certainly
not new, see e.g., [20], but it is particularly suited to treat
systems with finite, discrete state space. Let us first see
how motions in these spaces can be described in terms of
binary sequences.

A proper numbering of all available states reduces dy-
namics to a deterministic map over the set of the first M
numbers:

F: m— Fm), F: {1,.... M} > {1,...,M}. (7)

A single state m is a sequence of (at most) log, (M) bi-
nary digits, and its “trajectory” is given by F(ﬁ(m), for
“times” j = 0,1,..., N —1. These data can be translated
into a binary sequence X of length Iz (N, M),

Is(N, M) = N logy(M). (8)

We wish to characterize the chaoticity of a dynamical
system according to the complexity of its trajectories.
Note that this is precisely the main scope of symbolic
dynamics, where (7) is obtained by a suitable partition
of phase space, and therefore is a stochastic map. In
our case, no continuous phase space is hiding behind the
numbering of the states, but algorithmic complexity gives
us a clue and a means to catch the essence of the problem.
In fact, suppose one would need to send the sequence ¥ to
a friend living on an outer planet, and that long-distance
companies charge a dramatic price per bit transmitted.
It will be natural for this unfortunate researcher to look
for a convenient coding of ¥: an encrypting program of
length less than Iy which will be air-mailed in place of
the full sequence. Algorithmic complexity theory defines
complexity of a sequence the length of the shortest com-
puter program programmable on a universal machine, ca-
pable of outputting the sequence and stopping afterwards
[11,10]. In other words, this number (complexity) can be
characterized as the length of the shortest possible defi-
nition of the sequence itself. Seen from this perspective,
and remembering some renowned paradoxes of logics, it
is not surprising that the actual complexity of a given se-
quence cannot be computed, but only estimated, count-
ing, for instance, the bit length of a particular, though
not optimal, encoding program.

Without any doubt, a coding which will immediately
occur to the aforementioned scientist, and which is al-
ways available a priori for the sequence X, consists of

the record composed of the initial state m, whose length
is log,(M), the time span of the evolution, N, codable
in log, (V) bits, and the specification of the rule F' which
generates the dynamics. Let us call [z the binary length
of the algorithm for F' alone. An upper bound to the
optimal lr can be easily obtained: since F' comnsists of a
possible way to associate a new state m' to any original
state m, it can be coded by the table m — m’, with the
result that

lr < 2Mlog,(M). (9)

The estimate (9) will indeed be appropriate for most (in
probabilistic sense) maps F', and will be largely abundant
only for a restricted set of maps, which, on the other
hand, may contain important physical examples. To sum
up, the coding length I.(IN, M) can be estimated as

l(N,M)=lp + log,(M) + log,(N) + D
< (2M +1)logy(M) + logy(N) + D,  (10)

where D is a constant independent of N and M.

On the basis of these considerations, we can introduce
the following.

Definition: We shall call regular or compressible those
sequences that can be encoded by a computer program
whose length I.(V, M) increases less than linearly in N,
when N ranges over a physically significant interval, at
fixed, physically significant values of M. The remaining
set will be termed chaotic, or incompressible.

As shown by Alekseev and Brudno, the typical tra-
jectory of a classical unstable system meets this defini-
tion, no matter how fine is the partition which defines
symbolic dynamics. This guarantees that our definition
agrees with the most important characterization of chaos
(in our opinion) holding for continuous systems. The pro-
viso about a finite interval of values of N is crucial when
dealing with finite systems, as we shall see.

The definition given above comprises a crucial idea in
the word “increases”: for us, the increase of I (N, M)
shall be its leading scaling behavior as a function of N,
at physically reasonable values of N and M. Indeed, this
definition also implies that, for instance, logarithmic cor-
rections to a linear behavior of I.(IN, M) are unimportant,
and cannot change its chaotic properties. To explain the
reasons behind this choice, we must seek help for our
physical intuition.

Comparing the “growth rate” of [.(N, M) to N is quite
analogous to what is done, for instance, in the similar but
independent theory of computational complexity [21,22],
which ranges different problems by the scaling, with re-
spect to problem size, of the number of operations needed
by an optimal solution algorithm. We have problems
which are linear, quadratic, polynomial in system size,
and also NP complete problems, for which no polyno-
mial solution procedure exists. From this perspective,
scaling relations for the number of computer operations
are more fundamental than their absolute values, because
they discriminate between problems which can be techno-
logically mastered by a reasonable increase (polynomial)
of resources and those which cannot.

The same ideal setup is also applicable to algorith-
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mic complexity. In fact, quite in the same way as NP
complete problems quickly blow out of solvability range,
because a linear increase in problem size turns into an
exponentially larger demand in computer speed, an in-
compressible dynamics produces a set of possible motions
(words) whose cardinality increases exponentially in N,
and therefore requires a literal specification (transmis-
sion, in the example above) of each, integral, sequence
X, without any significant compression. An important
consequence of this fact, worth mentioning at this point,
is the lack of long term predictability of these sequences,
implied by the richness of the set of dynamical words.

Escorted by the penetrating analysis of algorithmic
complexity, we can now reconsider the dynamics given
by the rule (7), and its daughter sequences . Equations
(8) and (10) show that, when N grows indefinitely and
M is kept constant, the N dependence of I.(N,M) is
logarithmically bounded and hence the sequence is com-
pressible. Yet, note that the estimate (10) may not be
optimal in a large range of parameter values, possibly
including the physical M values. This happens notably
when studying complex systems, where the observation
time is typically much smaller than the cardinality of
state space, N < M.

Let us henceforth assume to be in this latter case, and
let us also assume that lr is maximal (that is, of the
order of Mlog, M). For short sequences X the trivial
code (verbatim transmission of X) will surely beat the
dynamical coding: Iy < l.. We denote by N the break-
even point, when the two codings are roughly equivalent.
One can easily find that

N~ M, (11)

where the symbol ~ indicates here and in the following
the leading order contribution. Formula (11) means that
only after the “time” N does the information contained
in the sequence ¥ become compressible. At the same
time, we can also expect that the sequence becomes pre-
dictable. Indeed, it happens that either during the time
N we have visited all states, and constructed the full
iteration table (we had enough time to do it), or the dy-
namics has taken place within a smaller subset, which has
been also fully explored and understood. In a sense, this
regularity comes after the fact, because M (and hence
N) is (in our hypothesis) much larger than the physi-
cally significant times over which a system is observed.
Therefore most trajectories generated under these condi-
tions have maximal complexity through all the observa-
tion time, and will be termed chaotic.

In all other cases, when a better coding of F' is avail-
able, the increase of the break-even point with M is
slower than linear. These sequences will be termed reg-
ular. At the extreme end lies the case when the formula
for F is so concise as to be logarithmically compressible:

lp ~log, M. (12)

The break-even point is then roughly independent of M,
and the rule is so simple to constrain immediately the
complexity of ¥. A notable example of this case is pro-
vided by the discrete linear homeomorphisms of the torus

studied by Percival and Vivaldi [23]: elegant algebraic
concepts translate the simplicity of the dynamical evolu-
tion of these systems.

The analysis just concluded was based on the idea that
the map (7) could be performed in exact arithmetic. To
broaden the scope of our investigation, we now consider
a more realistic representation of a dynamical system, as
a map F where errors can occur due to lack of precision
in carrying out arithmetical operations.

III. DYNAMICAL SYSTEMS
AS REALISTIC COMPUTING MACHINES

The evolution equation (7) can be carried out, in prin-
ciple, in exact arithmetic. Yet, in practice, maps of the
type (7) involve some kind of real number computations,
or physical measurements on analog devices, followed by
suitable truncations, as in our examples (5), (6). Due to
finite precision, errors may arise in these computations.
Clearly, these errors prevent us from coding a trajectory
over arbitrarily long times just by knowing the dynam-
ical rule, and the initial condition. This demands a re-
finement of the theory exposed so far, which amounts to
taking into account the “stability” of the rule (7).

We now regard the action of F' as a computer program
which receives as input the discrete state m, and a vector
of parameters C, with C components, needed to define
the action of F'. Since we suppose that these parameters
are all known within precision 279, the binary length of
the bit translation of C is ¢C. The output sequence X is
still determined by repeated applications of a map F', but
errors are now possible due to the incomplete knowledge
of the true values, CT, of the parameters C. We render
this unavoidable ambiguity in the determination of C by
adding a random round-off error w; to the unknown digits
of each component C;:

C; = C;T + wj. (13)

The random variables w; are uniformly distributed in
[-279771,27971]. Within these assumptions, the coding
length IF becomes

Ip ~ Cq +log, M, (14)

but we are not assured that this information (augmented
by the specification of the initial state) is enough to define
the sequence ¥ up to any time NN, because errors can
intervene.

This uncertainty leads to the following problem: given
two identical initial conditions, and the same vector of
true coefficients C, what is the time over which two dif-
ferent “physical” computations, characterized by differ-
ent realizations of the sequence of random variables w;,
produce the same dynamics? Obviously, the answer de-
pends on the realization of the random variables, and
the initial condition of the motion. Averaging over both,
we define the first error time N; this is also the average
length of sequences ¥ which can be effectively coded by
the realistic computer F. For later convenience, let us
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call e tke arithmetic precision: € = 279. The “first-error
time” N then depends, for a fixed map F', on ¢ alone and
we can envisage two main forms of this dependence. We
can have, for instance,

-~ 1
This case is the analog of polynomial error propagation,
since a linear decrease in €, which we can think to be
associated to a linear price, spent either in laboratory
instrumentation or in hardware or software for floating
point operations, leads to a power-law increase of the
“codable” time. The second case includes logarithmic
behaviors, for which

W ~ log, (%) . (16)

Here, the increase of one order of magnitude in comput-
ing capabilities results only in a linear increase in the
coding time.

Without much surprise, we identify logarithmic depen-
dence with chaos. All other behaviors, including power
law, correspond to regular motion. In fact, in the latter
case a trajectory of length N can be coded by a program
of length I,

lo ~logy, M + % log, N, 17

while in the realm of chaos—Eq. (16)—I. scales exactly
as N:

I, ~ logy M + D,N, (18)

where D; and D, are two suitable constants.

The one just presented will be our working definition
of chaos for discrete dynamical systems. The attentive
reader may wonder if this is equivalent to the definition
proposed in Sec. II. Once the forcefully nonrigorous na-
ture of our arguments is forgiven, the answer is affirma-
tive. In fact, computing errors can be regarded as an
artifice to obtain a careful bound on the complexity of a
dynamical sequence X.

To see why this is the case, let us fix the time N and
the parameters C to their ¢g-digit representations, with-
out any indeterminacy. Suppose also that numerical op-
erations are carried out exactly. In this case, Iy and
lp are still given by Eqgs. (8) and (14), respectively, and
l. = lr + log, N is an upper bound on the complexity
of ¥. Can it be improved, possibly reducing the “cost”
lp? If X is insensitive (up to time N) to some of the dig-
its of the parameters C; (that is to say, parameters have
been overdetermined), reduction is immediate. An op-
timal bound can therefore be obtained by “tuning” the
number of bits ¢—hence, e—to the minimum value re-
quired to have a correct determination of the sequence X
up to time N. This is how N(€) is defined. Using the
scaling behavior of this latter quantity, the reader can
finally derive the equivalence of the two definitions.

We are now ready to apply this theory to the two dy-

namical systems introduced in Sec. I and to investigate
their complexity properties.

IV. TWO EXAMPLES:
DISCRETE HAMILTONIAN SYSTEMS, AND
FULLY CONNECTED NEURAL NETWORKS

The arguments exposed in the preceding section allow
us to put bounds on the complexity of a dynamical evo-
lution just by studying the dependence of the first error
time N(€) on the precision e. This will be done in this
section, performing suitable computer experiments and
analytical estimates.

Let us first consider the case of maps in discretized
phase space, represented here by the standard map (5).
The number of possible states of this system, which we
call Vi, is L2. As a consequence, unlike that of continu-
ous maps, the long time behavior of (5) is periodic. The
typical period T7, is, nevertheless, very long; a reasonable
estimate is Ty, ~ V,/? [24,25]. The relation Ty, ~ LP/2,
with D the correlation dimension, was proven for hy-
perbolic systems [26]. By taking L large enough we are
assured that periodic motions will recur only over suffi-
ciently large times, which increase on average as L. We
shall consider the characteristics of the motion in the
transients before periodicities set in.

In Eq. (5) the only external parameter is the kick
strength k: the vector C consists of the sole compo-
nent Cj = k. Numerical determination of the first error
time N(e) is performed as follows: we take two trajec-
tories starting from the same initial condition, but with
slightly different evolution laws. The first is a reference
trajectory obtained from (5) with a given k, while the
second corresponds to k' = k + w, where w is a random
variable uniformly distributed in the range [—e¢,¢]. In
general, N(e) depends on the initial condition (z¢,yo).
For any given k and L we compute the average time
(N(€)) and the typical time exp(ln N(e)); angle brack-
ets indicate averages taken over the random variable w,
and initial conditions or, equivalently, the time evolution
along a trajectory. Experimental data obtained by this
procedure are reported in Fig. 1.

Numerical evidence supports the following picture: at
fixed L, the first-error time is roughly constant for large
values of the error €, while it shows a power-law behavior
with exponent very close to one for smaller errors €. The
transition between the two regimes occurs at a critical
value €.(L) which scales as €. ~ 1/L. In formulas:

Fen~{ o ez, 0o

with exponent o ~ 1.

It is rather easy to give analytical estimates support-
ing the numerical evidence. While elementary, they help
us to clarify the reasons behind the very narrow regions
of chaoticity of the system (5). Because the unique pa-
rameter defining the model is k, it is immediate that the
value of y,+; is correct, if 41,y are such. Errors can
therefore affect only z,,;. Now, letting k = k7T + w,
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FIG. 1. (N(e)) as a function of —log,o(€eL), for the dis-
cretized standard map with k = 7.3 for L = 10° (o) and
L = 10" (x). The full line is the curve P(e)~* with P(e)
given by Eq. (23).

z = zp + ksiny,, 2T = z, + kT siny,, we see that an
error will occur when z and 27 lie in different “cells” of
size | := 2% in the (periodic) circle. We can safely assume
that the values of 2T are uniformly distributed over the
circle, and therefore the cells are visited with equal prob-
ability. The random variable £ = wsiny,, takes values in
the interval [—n, 7], where n = esiny, for 0 < y,, < =.
The case 7 < y, < 27 is similar.

An error will then be formally defined as the following
random event:

mod (2T + £,1) # mod (27, 1). (20)

Since 2T and ¢ are uncorrelated, the error probability
p(n) can be computed exactly, with the result

x for n <1
_J 2
P(ﬂ)—{l_# for n > 1. (21)

The case 7 < y, < 27 leads to an identical result.

The simple average (21) must now be completed taking
account that the y,, are also uniformly distributed in the
unit cell, and can be considered uncorrelated from the
T,, as far as k is large, and taking integrals is our only
task. With this in mind, we can compute the global error
probability P(e),

P(e) = l/ p(esiny) dy. (22)
T Jo
Performing the integral leads to
< for e < 1
= wl
P(e) = { £(1-cosf)+1—2 4 Lintan(g) fore> L
(23)

where the angle 0 is defined via sin @ = [/¢, and we remind
the reader that ! := %" Finally, we can assume that

an error at time n happens independently of the past
dynamical history, so that the average waiting time for
the occurrence of an error is the inverse of its probability,
N(e) = P(e)"!. Numerical simulations show that the
behavior proposed in Eq. (19) holds. The curve P(e)~!
is plotted in Fig. 1, in comparison with the experimental
data.

To have a comparison with the continuum dynamics
of the usual standard map, we have computed the time
Na(€) required for two trajectories to reach lattice points
farther than a fixed distance A in the discrete phase space
of Eq. (5). Since A is defined by rescaling with 1/L the
Euclidean distances on the integer square lattice of side
L, it is appropriate to the large-L limit. We found

In(A/e) for € > e.(L
(Na(e)) ~ { (1(/6){’) for € z GCEL§7

again with a ~ 1. In the above, as usual, we just report
the scaling behavior of the quantity under observation.
We remark that when € < €.(L), Na(e) is roughly in-
dependent of A [which contributes only a logarithmic
correction to Eq. (24)].

The detail of the behavior of Na (¢) for large € is shown
in Fig. 2. Since the typical time and the average exit time
from a ball of radius A are very close, intermittency is
negligible (if present) and we can estimate the quantity
(1/Na) versus € from the data of the figure. This inves-
tigation reveals the Lyapunov exponent A of the contin-
uous standard map. In fact, if € is large, the first error is
almost always instantaneous, and two “parted” trajecto-
ries immediately experience the typical instability of the
system, so that

(24)

(Va0) = 31 (7). (25)

This is just another verification of the similarity of the
effect of a small disturbance on the equations of motion
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FIG. 2. (Na(e€)) as a function of —log,q(€), for the dis-
cretized standard map with k = 2 for A = 0.05 and L = 10°
(0), L = 10° (x), L = 10" (O), and L = 10® (+). The full
line is Na = (1/A)In(1/€) where X is the maximal Lyapunov
exponent of the continuous standard map.
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and of a small error in the initial conditions for a dynam-
ical evolution, discussed in Ref. [25].

These results unveil the nature of the dynamics of this
discrete system: its trajectories are incompressible and
therefore chaotic only for large values of ¢, the cutoff
value decreasing as 1/L. This helps us also to under-
stand the extent to which the dynamics of the discrete
standard map eq. (5) is equivalent to its continuum coun-
terpart. When k is large, and € > €., the two systems
possess chaotic trajectories. Yet, the maximum amount
of complexity available in this regime to the discrete sys-
tem is attained at the break-even point N between the
trivial and the dynamical code. Simple calculations show
that, to the leading order, N ~ log,(L). Up to this time,
trajectories are informationally complete, hence chaotic.
Elapsing this brief instant of absolute freedom, the dis-
crete system appears “regular,” i.e., compressible and
predictable. Therefore continuous and discrete systems
are similar (as far as chaos is concerned) only over loga-
rithmically short times.

For longer times, one has that

lg ~ exp(l.). (26)

This logarithmic simplicity is well explained by the sim-
ple calculations reported above: errors occur here be-
cause “missing” of a lattice point takes place; precision
in phase space targeting is proportional to e~!, and spac-
ing of phase space points scales as L1,

It is important to stress that the system appears “reg-
ular” on time scales much smaller than the typical period
Ty ~ LP/2,

It is now clear why the very same features are also
characteristic of the quantum dynamics of the Arnol’d
cat map, and most likely of the generic low-dimensional
quantum system. In fact, in the quantum version of a
classically chaotic system, a semiclassical wave function
chosen as initial condition follows a dynamics which is
approximately classical up to a time ¢, given by

1 I
tc ~ —X In (ﬁ) ) (27)

where ) is the Lyapunov exponent of the classical motion,
and I is a typical action. Over this time, the system
develops all its complexity. For longer times the behavior
becomes regular, and predictable. The existence of this
cutoff time can be determined by complexity arguments
analogous to those exposed in this work [27,28].

A quite similar state of things is found when examining
the dynamics of neural networks, Eq. (6). The parame-
ters defining the model are the matrix entries J;;. They
can be decomposed into a symmetric and an antisym-
metric part:

J,’j = J;j + ’YJ:;-, (28)

5= J5, I =—J5, Jii =0. (29)
In Eq. (29) we have also requested the diagonal elements
to be null. The parameter v determines the degree of
asymmetry of the couplings. The model (6), (28), (29)

1965

is obtained by a determination of the C = L(L — 1) +1
parameters of the model: the matrix elements of J and
the parameter y. The former can be arbitrarily speci-
fied. Indeed, they will be taken to be a realization of
a sequence of quenched Gaussian variables of zero mean
value and variance 1/(L —1). The scaling of the variance
with L ensures that each of the quantities ), J;jo; in
(6) is of order O(1) for any L. This model derives its
relevance from the existence of a transition from a dy-
namics characterized by short periodic motions to one
with exponentially long transients, occurring at v, ~ 0.5
[29,19].

Numerical simulations are performed at a fixed value
of v larger than 7., comparing a reference dynamics gen-
erated by the coupling J;; with that induced by the cou-

plings Jj; = Ji2 + v Ji¢, where J;}“”) = Ji(;”) + 65.]‘-(;"),
and the random quenched variables 6],-(}'”) have the same

statistical properties of JS’ ) The results reported in

Fig. 3 show that

() = exptn N~ { (0 BreZee )

with a power-law exponent @ ~ 1. A transition from
chaotic to compressible dynamics is observed also here,
with a cutoff €. which scales as L1,

Also in this case, we can provide a simple argument to
explain the scaling of (N (€)) as a function of €. Suppose
that, at time t, one has o} = oy, for all i. In order for
oi(t+1) = —o;(t+1) for some 7 at time t+1 it is necessary
and sufficient that

hi(t)Ri(t) <O, (31)

where h;(t) = 3. Ji;0;(t) and hi(t) = 3, Ji;05(t). By
introducing the variables

T = ZJ“]'O']' ), y= ZJJijUj (), (32)
j i

:...ﬁpfﬁj.‘.ﬁ]ﬁw.].,..l.j
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FIG. 3. (ﬁ(e)) as a function of —log,y(€), for the fully
connected neural network with v = 0.9 for L = 100 (90),
L =300 (x), L =900 (+). The dotted lines indicate P(¢)~*
with P(e) given by Eq. (35).
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one has h;(t) = « and h{(t) = z+ey, so that the condition
(31) is satisfied in the region in the z-y plane delimited
by the y axis and the line y = —z/e. We denote by ¢ the
angle of this angular sector:

T 1
¢= 5= arctan (;) . (33)
For large values of L, z and y are Gaussian variables
with zero mean and unit variance. Moreover, (zy) =
>.; Jij6Ji;. For a typical 6J;; one has (zy) ~ L~/2.
Therefore the probability that condition (31) for the spin
i be satisfied is

Pi= [ [ Play)dody =2, (34)
A ™

where A is the angular sector defined above, and
P(z,y) = (1/2m)exp[—(z2 + ¥?)/2]. Fore < 1, P; ~ ¢
and, for large ¢, P; ~ 1/2. Since h; is independent of h;
for 7 # 1 one obtains that the probability of the event
oi(t + 1) # oi(t + 1), for some ¢, is given by

P(e)=1-[1-Py(e)]*

™ 1 L
=1- [1——+Mctan (—)]
2 €

N{Le forex L

1 fore>» %— (35)

We can therefore derive the large-L behavior

~ 1 1
Fey=peo i~ {FESE
an estimate which is in good agreement with numerical
computations.

To complete the panorama of stochastic tests on the
motion of our neural network, we have computed the
rate of damage spreading. To do this, we consider two
trajectories ¢ and &, generated by means of the rule (6),
with the same couplings {J;;}, but with two minimally
different initial conditions: ¢1(0) = —o7(0) and 0;(0) =
6;(0) for i # 1. This minimal difference is obviously
related to a particular metric, the so-called bit-counting
or Hamming distance of information theory:

L
d(e,3) =Y loi —5il. (37)
i=1

An exponential increase in time of the Hamming distance
is somehow analogous to positivity of the maximal Lya-
punov exponent, although—together with remarks al-
ready presented—it must be observed that this metric
may not always have a clear physical significance.

We have studied the time evolution of the so-called
damage, D(n), which is simply defined in terms of the
Hamming distance:

1 & ~ d(n
D(n)=1- 7 ;ai(n)ai(n) = % (38)

Numerical simulations are shown in Fig. 4: the linear
growth of damage spreading is evident.
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FIG. 4. D(n) as function of n for the fully connected neural
network, with v = 0.9, for L = 100 (x), L = 300 (+).

V. CONCLUSIONS:
DETERMINISTIC RANDOMNESS
AND IRREGULAR BEHAVIOR

It is generally believed that standard theoretical con-
cepts are enough to catch the essence of chaos, even in
complex systems. On the basis of this belief, one might
think that the heuristic complexity arguments presented
in this paper do not add any new piece of information to
what can be described, e.g., via the computation of Lya-
punov exponents and/or the analysis of time sequences
with the embedding technique. We have shown that the
situation is, on the contrary, more intriguing: there ex-
ist compressible systems, i.e., “regular,” which at the
same time show certain behaviors typical of “chaotic”
systems. In addition, a transition from incompressible
to compressible dynamics takes place in these systems,
when either the “bit precision” € of a computer or the
“length scale” Az ~ 1/L of a dynamical system are var-
ied, keeping the other parameters constant.

These facts occur in two significant representatives of
important and distinct classes of dynamical systems in
finite spaces: discrete Hamiltonian flows, and neural net-
works. In the former, the lattice standard map of eq.
(5), time sequences “seems” irregular, correlations decay
to zero very quickly with increasing time delay, and yet
we have shown the logarithmic simplicity of these trajec-
tories. Distinct stochastic aspects are also present in our
second example, the neural network model of Egs. (6),
(28), (29), when v > 4. ~ 0.5: time correlations decay
exponentially fast to zero and Shannon entropy of the
sequences 0;(0),...,0i(n) is positive. Yet at the same
time we have shown that trajectories are compressible
and hence regular. The additional detail that spreading
of a “small” error occurs at a linear rate adds the final
touch to the picture. Similar contrasting details have
been recently found by Politi et al. in chains of coupled
stable maps. In spite of a negative maximum Lyapunov
exponent they find an irregular time behavior with ex-
ponential decay of correlation functions [30].

In the presence of this clouded horizon of stochastic
tests, providing ambiguous evidence, but each possessing
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its piece of truth, we have adopted deterministic ran-
domness as the basis for our definition of chaos in sys-
tems with finite number of states, following Alekseev and
Ford. We believe that this perspective deserves investiga-
tion in many respects. First, our present attempt at the
description of complex systems can surely be improved,
and more detailed analyses performed. Algorithmic com-
plexity is a theory of general purpose, and its generality
is such as to allow various applications in the physical
sciences: all it requires are symbolic sequences clearly
defined and motivated on physical grounds. Moreover,
this investigation can lead to the development of new
coding and decoding machines just by using familiar dy-
namical systems: many applications of neural networks
and cellular automata have already been proposed for
this scope (for a simple example of a coding dynamical
system, which also includes a complexity analysis, see
[31]).

Generality is another desirable property present in this
approach: since we have started from Alekseev’s treat-
ment of traditional low-dimensional classical systems, de-
terministic randomness as defined herein becomes a uni-
fying definition of chaos in a vast class of physical sys-
tems. This class can also include quantum mechanical

systems. In fact, many of the features observed in this
work are also present in the transition from quantum to
semiclassical mechanics, and affect the deceitful appear-
ance of quantum chaos [27).

Finally, observe that in Sec. III we have introduced our
working definition of chaos (via the heuristic concept of
realistic computer) as a means of verifying the conditions
of the rigorous definition of Sec. II. Yet, following purely
algorithmic considerations, we have arrived at a “prac-
tical” definition which encompasses the idea of sensitive
dependence on the parameters of a model. This natural
substitute of sensitive dependence on initial conditions
for systems with discrete states is indeed an appreciated
gift from our precursors.
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